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The effects of blade mistuning on the aeroelastic vibration characteristics of high-energy turbines are inves-
tigated, using the first stage of the oxidizer turbopump in the Space Shuttle main rocket engine as an example.
A modal aeroelastic analysis procedure is used in concert with a linearized unsteady aerodynamic theory that
accounts for the effects of blade thickness, camber, and steady loading. High sensitivity of the dynamic char-
acteristics of mistuned rotors is demonstrated. In particular, the aeroelastic free vibration modes become localized
to a few blades, possibly leading to rogue blade failure, and the locus of the aeroelastic eigenvalues loses its
regular structure when small mistuning (of the order usually present in actual rotors) is introduced. Perturbation
analyses that yield physical insights into these phenomena are presented. A powerful but easily calculated
stochastic sensitivity measure that allows the global prediction of mistuning effects is developed.

I. Introduction

T HE current trend in the design of high-performance pro-
pulsion turbomachinery has resulted in systems designed

for finite service life. These systems produce high power in
compact and light-weight machines, which require stringent
safety factors and margins. In this environment, the design
engineer is faced with the task of accurately predicting system
performance and dynamics. When designing for specific life
and reliability goals, the structural dynamic behaviors of the
turbomachine are of paramount importance.

The prediction of the dynamics of turbomachine rotors is
further complicated by the presence of blade-to-blade differ-
ences in structural and material properties. These differences
are unavoidable because they arise from manufacturing de-
viations and in-service degradation. They result in random
blade-to-blade variations in natural frequencies, a phenom-
enon commonly referred to as frequency mistuning. Although
most current analyses do not account for mistuning, mistuned
rotors may exhibit dynamic characteristics that are vastly dif-
ferent from those of idealized assemblies with identical blades,
termed tuned rotors.

In particular, previous studies have demonstrated that mis-
tuning 1) increases the aeroelastic stability of rotors,1-2 and
2) results in larger forced response amplitudes.3"5 Further-
more, it has recently been shown that mistuning can alter the
overall dynamics of rotors with weak interblade coupling in
a qualitative fashion. Namely, the equally distributed vibra-
tion amplitudes that characterize tuned rotors have been shown

Presented as Paper 91-3379 at the AIAA/SAE/ASME 27th Joint
Propulsion Conference, Sacramento, CA, June 24-27,1991; received
Aug. 1, 1991; revision received July 2, 1993; accepted for publication
July 27, 1993. This paper is declared a work of the U.S. Government
and is not subject to copyright protection in the United States.

* Associate Professor, Department of Mechanical Engineering and
Applied Mechanics. Member AIAA.

tNASA Lewis Research Center Group; currently Project Controls
Engineer, Construction Operations, Sverdrup Civil Inc., 13723 Riv-
erport Dr., Maryland Heights, MO 63043.

^Resident Research Associate, Structural Dynamics Branch, NASA
Lewis Research Center, Cleveland, OH 44135. Senior Member AIAA.

to become localized by mistuning to a few rotor blades, termed
rogue blades.6"8 This has important implications in that the
resulting energy confinement within a few blades indicates a
possible cause for rogue blade failure in rotors.

In this article we investigate the effects of blade frequency
mistuning on the aeroelastic vibration characteristics of a class
of bladed-disk assemblies, namely high-energy turbines with
weak aerodynamic coupling between blades. We do not con-
sider structural coupling between blades in this study. This is
because previous research6-7 has shown that aerodynamic and
structural coupling affect the sensitivity to mistuning in the
same qualitative fashion. The specific rotor we analyze is the
first stage of turbine blades of the high-pressure oxidizer tur-
bopump (HPOTP) in the Space Shuttle main engine (SSME).
The SSME rotor was selected because it exhibits many of the
characteristics of modern high-performance turbomachinery
designs. These include high energy density, low blade aspect
ratio, high aerodynamic loading, and advanced superalloy
materials. In addition, the SSME turbopump turbines have
experienced in-service blade crackings during development
and operation. These blades have suffered both low-cycle and
high-cycle fatigue, which leads to the presumption that sig-
nificant dynamic loading may exist. Contrary to previously
suggested failure mechanisms (e.g., thermal shock), the
present work proposes a theory which is based on the intrinsic
dynamic characteristics of mistuned rotors.

This article is organized as follows. Section II presents the
structural and aerodynamic models and the formulation of
the aeroelastic eigenvalue problem for high-energy turbines.
In Sec. Ill numerical results are presented for the SSME
turbine with various levels of mistuning. Efficient perturba-
tion methods that provide insight into mistuning effects are
applied in Sec. IV. In Sec. V a stochastic sensitivity measure
is developed that allows us to predict the sensitivity of bladed
disk assemblies to random mistuning without having to solve
mistuned aeroelastic eigenvalue problems. The effectiveness
of the sensitivity measure is illustrated by applying it to an
advanced unshrouded fan stage. Finally, Sec. VI concludes
this article.

There are two main contributions in this work. First, we
show the high sensitivity to mistuning and the occurrence of
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localized vibrations for a full model of a real bladed-disk
assembly, namely the SSME turbopump turbine. This has
important implications for the SSME turbine in particular,
and for high-energy turbines with weak interblade coupling
in general, because localized vibrations result in higher blade
amplitudes and stresses and therefore in shorter fatigue life
and possibly rogue blade failure. Second, a fundamental con-
tribution lies in the development of the powerful stochastic
sensitivity measure, which allows for the global prediction of
mistuning effects based solely upon tuned system information.
The sensitivity measure is a generic tool that can be applied
to any bladed-disk assembly.

II. Aeroelastic Formulation
In this article the bladed disk is modeled as a coupled system

of N blades. Each blade's dynamics is described by a single
in-vacuum (rotating) natural mode of vibration, say the nth
natural mode. This simplified representation assumes that the
coupling between the natural modes of an individual blade is
negligible. Therefore, the rotor equations of motion are a
system of N ordinary differential equations, each of which
corresponds to an individual blade on the rotor. (Note that
we developed a general formulation and a computer program
that allow for interactions between various blade modes9;
however, we found that the blade natural frequencies for the
SSME turbopump are so well-separated that intermode cou-
pling is insignificant in the operating range; this justifies the
single-mode per blade assumption.)

For simplicity, we assume that the blades are coupled only
aerodynamically, and that there is no structural coupling of
the blades. Moreover, we are examining the aeroelastic free
vibration of the assembly, and include in our model only those
aerodynamic forces that are motion-dependent. We also ig-
nore structural damping because this has no qualitative effect
on the results. The application of component mode analysis
to the N-blade assembly yields a set of N homogeneous, lin-
ear, ordinary differential equations in the modal amplitudes
of the blades. We look for motions such that all the blade
coordinates oscillate with the same frequency and/or decay
or grow at the same rate. This yields the following aeroelastic
eigenvalue problem of order N:

[A2M + K - A(a)a)]u = 0 (1)

where u = [u^ u2, . . . , UN]T is the complex eigenvector of
the blade modal amplitudes, where T denotes a transpose; M
and K are the real inertia and stiffness matrices, respectively;
A is the complex aerodynamic matrix, which depends on the
assumed frequency, a)cn for the aeroelastic mode of interest10;
and A is the complex eigenvalue. Since there is no structural
coupling, the rotor mass and stiffness matrices are diagonal
and of the form

M = I

K = diag[<,)r, <,>l v]

(2)

(3)

where the blade modes have been normalized with a unit
modal mass, and a)(n)J is the nth natural frequency of the yth
blade (rotating and in a vacuum). For a tuned assembly the
diagonal elements of K are identical and equal to a)^n)Q, the
nominal blade frequency squared, i.e., K = w2,l)0/. For a
mistuned rotor, the individual blade frequencies are generally
distinct and the stiffness matrix is diagonal, but not propor-
tional to/.

The aerodynamic coupling matrix A is a fully populated
complex matrix which is evaluated using the unsteady aero-
dynamic theory of Verdon and Caspar.11-12 Verdon's method
is employed to calculate the unsteady forces on the blades
due to a particular natural mode of motion for a (tuned)
cascade of identical blades. This results in a traveling wave

representation of the aerodynamic forces for the tuned cas-
cade. A detailed description of the unsteady force calculation
using this theory is given in Refs. 9 and 13.

The transformation of the aerodynamic influence coeffi-
cients between traveling wave coordinates and individual blade,
or physical coordinates is defined by

A = EAE* (4)

where -A, the aerodynamic matrix in traveling wave coordi-
nates, is a diagonal matrix of complex elements

(5)

(6)

A = diag[-Al5 A2, - . . , AN]

The unitary transformation matrix £ is given by

E =

where

j=l,...,N . (7)

where /3y is the interblade phase angle.
Note that, in general, an iterative procedure is required in

order to solve the aeroelastic eigenvalue problem, Eq. (1),
because the aerodynamic forces are dependent upon the fre-
quency of vibration. However, for weak aerodynamic cou-
pling, such as exists in high-energy turbines, no iteration is
necessary to obtain matched frequency.

The solution of Eq. (1) consists of N pairs of eigenvalues
and eigenvectors. For an eigensolution (A, M), the blade as-
sembly's motion is given by uext. The real part of the eigen-
value, Re(A), determines the aerodynamic damping for the
mode, while the imaginary part, Im(A), is the damped natural
frequency of oscillations of the mode. Flutter in a mode occurs
when the real part of the eigenvalue is greater than or equal
to zero (and if the damped natural frequency of the mode
equals the assumed frequency).

For a tuned assembly the matrix E diagonalizes the aero-
elastic problem, Eq. (1). This means that the eigenvectors of
the system are the columns of E, hence, the aeroelastic mode
shapes of the tuned assembly are the e,, j: = 1, . . . , -N, given
by Eq. (7). For a motion in the yth mode, all blades vibrate
with equal amplitudes, but with a constant phase difference
j87 between adjacent blades. We will refer to the modes of the
tuned assembly as constant interblade phase angle modes.
Physically, these normal mode motions are waves traveling
through the assembly with a phase change )8y at each blade.
To each backward traveling wave, ej corresponds a forward
traveling wave eN_J+2 which has the same number of (trav-
eling) nodal diameters. After diagonalization of Eq. (1) with
the similarity transformation defined by E, the aeroelastic
eigenvalues of the tuned assembly are readily given by

A2,,- = (8)

where the subscript (n), representing the nth blade mode, is
dropped for simplicity.

For a mistuned assembly the constant interblade phase an-
gle vectors e-} do not uncouple the system (1), and thus are
not the aeroelastic modes. A numerical or a perturbation
solution of the aeroelastic eigenvalue problem is then re-
quired. In this work, we assume small random frequency mis-
tuning: the mode shape of each blade is identical, the natural
frequency of each blade is a small deviation from the nominal
blade frequency, and the frequencies for the individual blades
are generated using random numbers from a uniform prob-
ability distribution function. The modes of mistuned assem-
blies are studied in the following sections.
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III. Mode Localization and Loss of Eigenstructure in
the SSME Turbopump Turbine

The first stage of the SSME turbopump is a rotor consisting
of 78 blades equally spaced on the disk. A three-dimensional
finite element model is used to calculate the modes of free
vibration of individual blades in a vacuum. Figure 1 displays
the finite element mesh of one HPOTP turbine blade, along
with its first three natural frequencies. In order to account
for blade root flexibility, linear springs are included at the
surfaces of the firtree lobes. Recall that structural coupling
and structural energy dissipation are not included in the model,
and that the blades are coupled solely through aerodynamic

Mode 1 (Bending) 4748 Hz
Mode 2 (Edgewise) 9950 Hz
Mode 3 (Torsion) 16580 Hz

Fig. 1 SSME HPOTP turbine blade finite element model and natural
frequencies.

effects. The unsteady, motion-dependent aerodynamic forces
are calculated from a two-dimensional, linearized, unsteady
aerodynamic theory applied in axisymmetric strips along the
blade span. For details on the structural and aerodynamic
models see Refs. 9 and 13.

We observe in Fig. 1 that the individual blade natural fre-
quencies are well separated. For small damping, the dynamic
interactions between the various blade modes due to aero-
dynamic coupling are negligible. Therefore, it is reasonable
to model each blade as a single-degree-of-freedom oscillator
for a given natural mode.

We solved the aeroelastic eigenvalue problem for the tuned
rotor and for random mistuning of various strengths. Mistun-
ing was measured by its dimensionless standard deviation s
equal to the standard deviation of the blade natural frequen-
cies divided by the nominal fiatural frequency. We used a
single mistuning pattern for all results. The first three blade
modes were considered. For the tuned system, we found that
most of the interblade phase angle modes in the second group
of modes (corresponding to an edgewise motion of the blades)
undergo flutter instability, i.e., have a positive real part of
the eigenvalues. This instability can be removed easily by
including small structural damping in the model.9 No flutter
was found in the other groups. Therefore, we focused our
investigation of the effects of mistuning on this second group
of modes, because it is the least damped. The inlet Mach
number for the strips is about 0.27, and for this second normal
mode the reduced frequency (based on chord) is about 2.24.
In all the results presented, the eigenvalues are nondimen-
sionalized with respect to the square of the nominal blade
frequency.

A. Scattering of the Root Locus
The root locus of the 78 aeroelastic eigenvalues in the edge-

wise mode group is displayed in Fig. 2 for various mistuning
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Fig. 2 Root locus, in the complex plane, of the 78 aeroelastic eigenvalues in the edgewise mode group, for various values of blade mistuning.
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values. The imaginary part of the eigenvalues is plotted vs
their real part. Note the nearly regular pattern featured by
the root locus of the tuned assembly. Also note the narrow
range of values spanned by the real parts of the eigenvalues,
which indicates weak aerodynamic coupling between blades.
As mistuning increases, the regularity of the root locus is
gradually lost, and for very small mistuning of standard de-
viation 0.2% the locus consists of a constellation of eigen-
values with little discernible pattern. This qualitative change
for very small mistuning indicates the high sensitivity of the
aeroelastic dynamics of the HPOTP turbine to mistuning.
Besides the loss of structure of the root locus, we note that
mistuning causes a narrowing of the range of the real parts
of the eigenvalues (representing damping), but a stretching
of the root locus in the imaginary direction (frequency). In
particular, we observe that the real part of the most unstable
eigenvalue (that with the largest real part) decreases when
mistuning is introduced, thereby confirming the well-known
stabilizing effect of mistuning.1'6

B. Localization of Aeroelastic Mode Shapes
The high sensitivity to mistuning detected in the root locus

plots is perhaps best illustrated by the changes in the corre-
sponding mode shapes. Figure 3 displays the amplitude pat-
tern of the most unstable aeroelastic mode shape for several
mistuning values. As expected, the mode shape of the tuned
rotor is a constant interblade phase angle mode and therefore
features identical amplitudes for all blades. When mistuning
increases, the whole assembly ceases to participate in the
motion and the vibration becomes confined to a few of the
blades, i.e., the phenomenon of mode localization occurs.
The sensitivity of the assembly dynamics to mistuning is ex-
treme: even for a very small mistuning of 0.05% the blade
amplitudes vary widely throughout the rotor, and for 1%
mistuning only four blades participate in the motion to any
significant degree! This indicates that the transition from con-
stant interblade phase angle modes to localized modes is very
rapid.

In order to illustrate further this dependence of localization
on the mode number, Fig. 4 shows the amplitude patterns of
4 of the 78 aeroelastic mode shapes for a given mistuning
strength: 2 modes at the extremes of the frequency cluster,
namely the lowest and highest frequency modes, and 2 modes

Blade number, i Blade number, i

Fig. 3 Amplitude pattern of the aeroelastic mode shape associated
with the most unstable eigenvalue in the edgewise mode group, for
various mistuning strengths.

near the middle of the frequency cluster, the least and most
stable modes. Observe that the modes with the extreme fre-
quencies are substantially more localized than those near the
middle of the frequency band, and hence they are more sen-
sitive to mistuning.

The localization of aeroelastic mode shapes by mistuning
has important practical consequences for the HPOTP turbine
and possibly other high-energy turbines. First, it means that
for such systems, most tuned aeroelastic calculations are prob-
ably invalid not only in a quantitative but in a qualitative
sense as well. Second, strong mode localization appears to be
unavoidable because its onset occurs for mistuning levels that
are well below those resulting from typical manufacturing
tolerances. For example, for the SSME turbine, testing of
several hundred blades led to mistuning standard deviations
ranging from 0.5 to 5% in the various mode groups, while
the onset of localization, in the present analysis, is for s =
0.01%. Third, the localization of the aeroelastic modes is a
potentially dangerous phenomenon, even though mistuning
helps stabilize the rotor. This is because the vibrational energy
is concentrated in a few of the blades rather than being dis-
tributed equally throughout the rotor. Hence, a few blades
of the mistuned rotor vibrate with much larger amplitudes
than if the rotor were tuned, which results in larger stresses,
shorter fatigue life, and possibly blade failure. Localization
provides a plausible explanation for the occurrence of blade
cracks and single blade failures (rogue blades). Fourth, al-
though our results are only concerned with the free response
of the HPOTP turbine, we expect its forced response to be
affected by mistuning in a similar way and forced response
localization to occur, because the response can be expressed
as a combination of motions in the free aeroelastic modes.
Such correspondence between free and forced response is
indicated by studies of localization in simple models of struc-
turally coupled mistuned assemblies.7'14

Note that the above does not necessarily mean that tuned
analyses are useless, as they yield conservative "worst case1'
results and are therefore valuable at the design stage.

C. Transition from Extended to Localized Modes
We have seen in Fig. 3 that the transition from constant

interblade phase angle (or extended) modes to localized modes
is very rapid, occurring primarily between 0-0.5% mistuning.
We also note in Fig. 3 that the region of localization of a
mode (i.e., the location of the blades with the largest ampli-
tudes) changes for every mistuning level, until severe locali-
zation is.reached for e = 0.5%. This suggests that the tran-
sition from extended to localized modes is complex! In this
section we examine this transition region.

Figure 5 displays the loci of the real parts of the 10 most
unstable eigenvalues vs mistuning strength. In the region from
0% to approximately 0.05% mistuning, the variation of the
eigenvalue real parts appears to be^nearly parabolic, with all
eigenvalues being affected by mistuning in a similar way. This
parabolic variation, as opposed to a linear one, indicates the
high sensitivity to mistuning. It suggests the use of second-
order perturbation methods to capture this high sensitivity^
(see Sec. IV). In this parabolic region the mistuned system
behaves as a perturbation of a tuned assembly, such thatjhe
structure of the root locus is nearly regular and the mode
shapes feature similar amplitudes for all blades. The loci of
the imaginary parts of the eigenvalues (not shown) displays
the same features as in Fig. 5.

Figures 2 and 3 show that the tuned system characteristics
begin to break down for s '= 0.05%. From e = 0.05 to 0.5%
we observe in Fig. 5 a region where the behavior of the ei-
genvalues exhibits great complexity. We label this zone the
transition region. It is characterized by what appear to be
numerous crossings of the loci of the eigenvalue real parts.
The irregular shape of the lower envelope of these eigenvalue
loci is due to the existence of crossings with the other eigen-
values of the system, which are not shown in Fig. 5.
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78
Blade number, i

Highest frequency mode

1
Blade number, i

Least stable mode

78

Blade number, i

Most stable mode

Blade number, i

Lowest frequency mode

Fig. 4 Amplitude patterns of selected aeroelastic mode shapes of an assembly with t — 0.05% mistuning are shown on the associated root locus
for the edgewise mode group. The lowest and highest frequency modes and the least and most stable modes are displayed.

mode shapes through a crossing, we selected a nearly simul-
taneous crossing of three eigenvalue loci in Fig. 5. This triple
crossing is displayed in Fig. 6, along with the corresponding
mode shapes before and after the crossing.

First, we note that an enlargement of more than two order
of magnitudes in mistuning was necessary in order to capture
the crossing/This underlines the complexity of the dynamics
in the transition region. Second, we observe from Fig. 6 that
the modes simply switch positions before and after the cross-
ing, i.e., each mode shape is clearly associated with an ei-
genvalue loci (here, nearly a straight line) throughout the
crossing region. Thus, if we choose to follow a given eigen-
value locus, the character of the associated mode is preserved
through the crossing. However, if we choose to track, e.g.,
the mode with the largest real part (the most unstable mode),
this mode changes character every time it goes through a
crossing. Since there are numerous crossings in the transition
region, we can expect a mode shape to undergo numerous
changes as mistuning increases. This is consistent with the
observation made in Fig. 3, which shows that the most un-
stable mode becomes localized at various locations on the
rotor as mistuning increases. These changes in the localization
region correspond to the crossings with other eigenvalues.

The most striking feature of the transition region is its com-
plexity (recall that only 10 of the 78 eigenvalues are displayed
in Fig. 5). Although the bladed disk considered is a linear
system, it is apparent from Figs. 5 and 6 that its dynamics are
extremely complicated for this range of mistuning, because
the mode shapes and eigenvalues are greatly affected by small
changes in the mistuning. For example, numerous mode
switchings occur. Thus, in practice, it is difficult to predict
accurately the modes of assemblies operating in the transition
region.

For mistuning greater than 0.5%, the transition to localized
modes is nearly complete (see the mode shapes in Fig. 3).
This localization region is characterized by fewer eigenvalue
loci crossings than in the transition region, and by nearly linear
variations of these loci with mistuning. This linear variation
is due to the fact that the localized modes can be approxi-
mately associated with single decoupled blades, the frequency
of which varies linearly with small mistuning (see the pertur-
bation analysis in Sec, IV). This is in contrast with the region

.000 .001 .002 .003 .001- .005 .006 .007 .008 .009 .010

Mistuning, s

Fig. 5 Loci of the real parts of the 10 least stable eigenvalues in the
edgewise mode group, vs mistuning standard deviation.

Although Fig. 5 seems to display eigenvalue crossings, sev-
eral studies of mode localization in other mistuned periodic
systems (e.g., multispan beams and chains of oscillators15)
have shown that eigenvalue loci typically do not cross, but
veer away from each other abruptly. Distinguishing between
veerings and crossings is difficult unless analytical solutions
are available. In the present problem, although we decreased
the mistuning increment close to machine accuracy, we were
unable to prove that there is a nonzero minimum distance
between two eigenvalue loci at their junction. Therefore, we
were unable to determine whether veerings or crossings are
displayed in Fig. 5. For definiteness we refer to those as
"crossings" in the following.

The behavior of the eigenvectors near the eigenvalue loci
crossings is of interest. In order to illustrate the change in the
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Blade number, i
£ - 0.0672 %
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Fig. 6 Crossing of three eigenvalue loci in a small mistuning range (enlargement of Fig. 5). The associated mode shapes before and after the
crossing are shown.

of very small mistuning, which features the high sensitivity
associated with parabolic variation.

Our results for the HPOTP turbine indicate that severe
localization occurs at the mistuning levels measured for the
SSME blades (typically between 1-4%), and that no modes
belong to the transition region. However, structural coupling
through the disk or tip shrouds would lower the sensitivity to
mistuning and thus extend the transition region. Therefore,
it is conceivable that some of the modes of the real HPOTP
rotor belong to the transition region and, although very dif-
ferent from extended modes, are not fully localized to a few
blades. Moreover, other high-energy turbines may have dif-
ferent parameter values (interblade coupling, number of blades,
blade stiffness, etc.), and may feature modes in the transition
region. These modes would be difficult to predict accurately,
as discussed previously.

D. Localization of Various Mode Groups
The aeroelastic modes of the W-blade assembly are clus-

tered in groups of N modes, such that each group corresponds
to a blade mode. While the results given above focus on the
effects of mistuning on the second mode group, it is of interest
to compare the sensitivity of the other groups of blade modes
and their localization.

The first three normal modes of the HPOTP turbine blade
are bending, edgewise, and torsion, respectively. Figure 7
displays the amplitude patterns of the most unstable mode of
the assembly in each group. The frequency mistuning pattern,
as well as the mistuning strength of 0.5%, are taken to be
identical for all three mode groups. We observe in Fig. 7 that
although the bending mode is substantially affected by mis-
tuning, it does not become localized. On the other hand, the
modes in the edgewise and torsion groups become strongly
localized, the latter slightly more than the former. Thus, the
bending mode group is much less sensitive to mistuning than
the edgewise and torsional mode groups, which feature nearly

the same sensitivity. This behavior is explained in the next
section.

IV. Perturbation Analyses
In this section we seek an understanding of the physical

mechanisms that govern the dynamics of mistuned assemblies.
To that end, we have developed perturbation schemes that
predict the high sensitivity to mistuning as well as characterize
the degree of localization of the modes. Here we apply this
perturbation approach to the HPOTP turbine. For details on
the perturbation analyses, see Ref. 6.

A. Classical Perturbation Approach
The most natural perturbation procedure to study the dy-

namics of a mistuned assembly is one that considers the tuned
assembly as the unperturbed system, and the blade mistuning
as the small perturbation. This approach, which we refer to
as the classical perturbation method, yields easily eigenvalue
and eigenvector perturbations to any order in the mistuning
(first- and second-order results are given below). However,
this classical approach is inherently flawed in cases of high
sensitivity and localization. This is because choosing the small
mistuning as the perturbation parameter requires the eigen-
solution of the mistuned assembly to be a small perturbation
of that of the tuned assembly. Clearly, this is not the case
when the phenomena of mode localization and root locus
scattering occur, since in this case mistuning causes qualitative
(i.e., very large) alterations in the assembly's dynamics. Thus,
the classical perturbation analysis cannot capture the drastic
changes in the dynamics caused by small mistuning. As we
discuss below, however, the mere fact that the technique fails
in the presence of localization can be used to predict the high
sensitivity to mistuning.

Let us now explore the mechanisms of failure of the classical
perturbation method. We denote the unperturbed stiffness
matrix of the tuned assembly by K{}, and the perturbation
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Bending mode group
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Blade number, i
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Blade number, i
Edgewise mode group

Torsion mode group

JO 40 50

Blade number, i

Fig. 7 Amplitude pattern of the least stable mode shape in each of
the first three mode groups (bending, edgewise, and torsion). In all
cases the blade mistuning is e = 0.5%.

matrix due to small mistuning by 8K, where the latter is a
diagonal matrix of mistunings in the squares of the individual
blade frequencies 8coj, such that <5o>,/a>() « 1 for / = 1, . . . ,
N. The stiffness matrix of the perturbed (mistuned) assembly
is therefore K = K() + SK. The modes of the unperturbed
system are the interblade phase angle modes given by Eqs.
(7) and (8). Those of the perturbed system can be expanded
in a perturbation series as

A2 - A2,- + 6A2 + <52A
u, = e, + duf + 82u, / = ! , . . . , # (9)

where 8Aj and 8u, (respectively 52A2 and 52w,) are first-order
(respectively, second-order) terms in the small mistuning.

Applying perturbation theory to the eigenvalue problem,16

one can show that the first-order perturbation of the eigen-
values is

/V A - = i
i = 1, N (10)

We readily observe that for small mistuning this is always a
small term. Hence, the first-order eigenvalue perturbation
cannot reveal high sensitivity to mistuning. Moreover, all ei-
genvalues are shifted by an identical amount and, for a mis-
tuning pattern that averages to zero, the change in the ei-
genvalues equals zero. Another interesting remark is that the
perturbation of the eigenvalue squared is real, therefore mis-

tuning, to the first-order, does not affect the stability of the
assembly (or very little). Here we reach the seemingly con-
tradictory conclusion that if the average mistuning throughout
the rotor is not zero, i.e., if we stiffen or soften all the blades
on the average, the flutter boundary remains unchanged! The
explanation of this paradox lies in the fact that the assumed
frequency that was used for the aerodynamic computations is
then no longer valid. If the effect of mistuning with nonzero
mean on flutter is sought, the full mistuned eigenvalue prob-
lem must be solved in order to determine the correct assumed
frequency. These remarks suggest that, although simple and
cost-effective, perturbation methods must be used with care
in a design environment.

Returning to our main discussion, we now give the second-
order perturbation of the eigenvalues

| *?«**,. |2

t - Ak
i = 1,

(11)

where * denotes complex conjugate and | | the modulus of
a complex quantity. In Eq. (11), the numerator in the sum-
mation is a measure of the square of the mistuning (in the
frequency squares), and the denominator is the spread among
the interblade phase angle aerodynamic coefficients. For the
HPOTP turbopump, these aerodynamic coefficients are small
because the unsteady aerodynamic forces are small compared
to elastic and inertia forces and provide very weak coupling
between the blades. Equation (8) shows that the spread in
the interblade phase angle aerodynamic coefficients is simply
that in the tuned aeroelastic eigenvalues. From Fig. 2, this
spread is seen to be about four orders of magnitude smaller
than the square of the nominal blade frequency. Thus, if
mistuning is of the order of, e.g., 1%, the numerators and
denominators in Eq. (11) are of comparable magnitudes and
the second-order eigenvalue perturbation is of the order of
one, not second-order. The fact that eigenvalue perturbations
become large indicates the failure of the perturbation analysis
and reveals the high sensitivity of the assembly dynamics to
mistuning.

Several remarks are in order. First, the above discussion
examines a single term in the summation, Eq. (11). Multiple
terms in the summation generally increase the magnitude of
second-order perturbation. Therefore we expect the sensitiv-
ity to mistuning to increase with the number of blades (this
is discussed in Sec. V). Second, although not shown here, the
aeroelastic eigenvector perturbations behave similarly to the
second-order eigenvalue perturbations, i.e., the sensitivity of
the eigenvectors is inversely proportional to the aerodynamic
coefficients. This is consistent with the drastic alterations of
the mode shapes observed in Fig. 3. Third, although the fail-
ure of the perturbation analysis indicates high sensitivity to
mistuning, the perturbation results cannot be used to char-
acterize the behavior of the mistuned assembly, as they are
qualitatively in error. Fourth, a classical perturbation analysis
does not always fail. For example, if mistuning is extremely
weak, e.g., 0.01% for the SSME turbopump, the ratios in
Eq. (11) may be sufficiently small for the perturbation expres-
sion to be valid. This is also the case if the interblade coupling
is strong, such that the aerodynamic coefficients, and thus the
denominators in Eq. (11) are not small. In these cases mis-
tuning has a small effect on the assembly's dynamics.

We now have an understanding of the mechanism for high
sensitivity to mistuning. It is the closeness of the aeroelastic
eigenvalues of the tuned assembly that determines how sen-
sitive the assembly is. This spread in the eigenvalues is gov-
erned by the magnitude of the aerodynamic coefficients, and
therefore by the strength of the aerodynamic interblade cou-
pling [see Eqs. (8) and (11)]. This mechanism is the same as
that identified for assemblies with structural interblade cou-
pling.7 In the case of the HPOTP turbine, the interblade
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coupling is very weak and thus the tuned aeroelastic eigen-
values are very close, which results in an extreme sensitivity
to mistuning, as shown by the results in the previous section.

For example, we can use the closeness of the tuned eigen-
values to predict the sensitivity in the various groups of modes.
For the first group of modes (bending), we found that the
spread in the imaginary parts (the frequencies) of the tuned
eigenvalues is approximately 0.004%, while the correspond-
ing spread for the second group of modes (edgewise) is only
0.001%. This means, since the distance between eigenvalues
is governed by the strength of aerodynamic effects, that the
interblade coupling is weaker for the edgewise modes than
for the bending modes. Accordingly, the edgewise modes
feature a much higher sensitivity to mistuning than the bend-
ing modes, as shown by the localization displayed in Fig. 7.

B. Modified Perturbation Method
While identifying the cause of high sensitivity is useful, it

does not provide answers regarding the behavior of the mis-
tuned assembly, viz., the occurrence of mode localization. In
order to characterize the dynamics of mistuned assemblies,
we have developed a modified perturbation approach de-
scribed below.

The key idea behind the modified perturbation scheme is
to recognize that high sensitivity is caused by small interblade
coupling, and therefore the interblade coupling ought to be
treated as a perturbation. With this approach, the (modified)
unperturbed system is purely structural, consisting of uncou-
pled mistuned blades in a vacuum. It has distinct natural
frequencies (unless two or more blades happen to have the
same frequencies, but we do not consider this case here). The
(modified) perturbation consists of the small unsteady aero-
dynamic forces, which provide the interblade coupling. Each
normal mode of the unperturbed system features uncoupled
oscillations of a single mistuned blade, with all others re-
maining quiescent. When weak aerodynamic interblade cou-
pling is introduced, the neighboring blades participate in the
motion, but do so with small amplitudes because the small
coupling is not sufficient to cause a resonance among the
slightly different blades. Each mode of the mistuned assembly
is a perturbation of the oscillations of a single blade, and thus
is localized to that blade or to a small group of blades around
it, depending upon the relative magnitudes of the coupling
and the mistuning. Examples of localized modes are given in
Fig. 3. In summary, the modified perturbation method simply
utilizes the fact that, for weak enough interblade coupling or
strong enough blade mistuning, the modes of the mistuned
assembly are perturbations of the modes of the decoupled
mistuned assembly, i.e., of single blade oscillations.

The modified perturbation scheme can be easily imple-
mented by treating the aerodynamic matrix in Eq. (1) as the
perturbation; for details see Ref. 6. The mistuned assembly
eigenvalues are given by, to the second-order in the interblade
coupling:

\j = - («Ji + &,?) + A,, -
A A
" , + H.O.T. (12)

where the zeroth-, first-, and second-order terms in the in-
terblade coupling are the first three terms on the right side,
respectively. Clearly, the effect of the aerodynamic coupling
is to modify slightly the assembly eigenvalues from the indi-
vidual blade frequencies. Also, the second-order term in Eq.
(12) indicates that the modified perturbation approach fails
when mistuning is too small.

C. Validity of the Perturbation Schemes
Figure 8 displays the percentage error between the "exact"

numerical eigensolution and the two perturbation results vs
the strength of mistuning for the imaginary part of the lowest
frequency eigenvalue. We note that for very small mistuning,

2nd order modified
perturbation

2nd order classical
perturbation

.002 .003 .001- .005 .006 .007

Mistuning, e

Fig. 8 Comparison of the classical and modified perturbation results
with the exact solution. The error from the exact solution is plotted
vs the mistuning standard deviation, for the imaginary part of the
lowest frequency eigenvalue in the edgewise mode group.

the classical perturbation result agrees well with the exact
solution, such that in this region the mistuned assembly be-
haves as a perturbation of the tuned one. This corresponds
to the region of parabolic variation of the eigenvalues in Fig.
5. As mistuning increases, the classical perturbation result
diverges rapidly from the exact solution, while the modified
perturbation approximation approaches the exact solution.
This second zone, where neither perturbation scheme pro-
vides a good approximation of the eigensolution, corresponds
to the complex transition region. Finally, as mistuning in-
creases to 0.5%, the agreement between the exact and mod-
ified perturbation solutions becomes nearly perfect. In this
case the mistuned assembly behaves as a perturbation of an
assembly of decoupled blades. This corresponds to the lo-
calization region characterized by straight eigenvalue loci in
Fig. 5. Finally, note that the error of the appropriate pertur-
bation schemes is never greater than 0.05%. This makes the
cost-effective perturbation methods accurate analysis and de-
sign tools.

As an example of mistuned assembly dynamics prediction,
Fig. 9 displays the root locus of the eigenvalues of the HPOTP
assembly with 2% mistuning, by both the modified pertur-
bation scheme and the exact solution procedure. The pertur-
bation method clearly captures the features of the root locus,
both qualitatively and quantitatively. For example, the scat-
tering of the locus, as opposed to the regular structure of the
tuned locus, is reproduced by the perturbation result. We also
note that the exact frequencies (the imaginary parts) are closely
matched by the perturbation results. Larger discrepancies oc-
cur for the real parts (the damping values), and we believe
this is due to the fact that damping is small for all the modes.
Finally, we note that one of the eigenvalues (or at least its
real part) is not predicted accurately by the perturbation
method. We believe this occurs because, in the random mis-
tuning pattern used, two neighboring blades have nearly equal
mistuned natural frequencies. In this case the modified per-
turbation approach fails, see Eq. (12).

V. Stochastic Measure of Sensitivity
The perturbation schemes discussed above provide a phys-

ical understanding of the sensitivity to mistuning and allow
for the analysis of localized modes. In this section we develop
a sensitivity measure that will allow the designer to predict,
in a very simple way, the effects of mistuning on the various
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Fig. 9 Root locus of the aeroelastic eigenvalues in the edgewise mode
group, by exact solution method and modified perturbation method.
The mistuning is e = 2%.

aeroelastic modes. Because mistuning is random in nature, a
statistical approach is chosen to obtain a compact measure of
sensitivity. This measure allows us to predict mistuning effects
essentially with a single scalar for each mode. However, a
possible drawback of this stochastic measure is that individual
realizations of mistuning patterns may result in dynamic be-
haviors much different from the average behavior predicted
by the sensitivity measure (for example, a "sinusoidal" mis-
tuning pattern alters the dynamics much less than a truly
random pattern).

The sensitivity measure defined below does not require the
mistuned system solution, and therefore, is cost effective.
Moreover, since the forced response of mistuned assemblies
consists of linear combination of responses in the free modes
of vibration, the sensitivity of the aeroelastic modes will pro-
vide useful information about that of the forced response.
Thus, this measure has the potential to become a valuable
design tool.
A. Theoretical Development

The basic idea is to define the sensitivity of the system by
taking the statistical average of the second-order eigenvalue

perturbation (here mistuning is the perturbation). This is mo-
tivated by the findings in Sec. IV, which showed that the
mechanism for high sensitivity, i.e. , the closeness of the tuned
eigenvalues, is embedded in the second-order perturbation,
while the first-order perturbation always remains small. We
rewrite Eq. (11) using the expression for the interblade phase
angle mode shapes e-t given in Eq. (7). After some algebra,
we obtain

cos - (i - k)(p - q)\
J

(13)

At this point we need to define the mistunings in the frequency
squared, &u2, p = 1, . . . , N, as independent and identical
random variables of mean zero and standard deviation or. This
simply means that the blades are chosen randomly from an
(ideally) infinite population. Next, we take the statistical av-
erage, over the random mistunings, of the second-order ei-
genvalue perturbation. This simply yields

1
i = 1, N (14)

because {(5a>2)2} = cr2, and for p ± q, (8a)l}8a)(/) = 0, where
< } denotes an average.

Now consider the Taylor expansion of the /th eigenvalue
in terms of mistuning, Eq. (9), and take its statistical average.
Since the first-order perturbation is proportional to mistuning,
it averages to zero and we obtain

/ = ! , . . . , # (15)

This shows that to the second-order, the locus of the average
of an eigenvalue vs the mistuning standard deviation is a
parabola. The curvature of this parabola determines the sen-
sitivity of the associated aeroelastic mode to mistuning. Hence,
we rewrite

<A2> = Afw + i = 1, . . . , N (16)

where we have defined the stochastic sensitivity measure of
the /th eigenmode to mistuning as

1
Ak - A, / = ! , . . . , # (17)

We say a mode features a low or normal sensitivity when
the expansion (16) is valid. This occurs when the term S,0-2

is second-order, and therefore when the sensitivity measure
Sf is of the order of one. High sensitivity in a mode occurs
when SfOr2 is first-order or larger, implying the failure of the
perturbation analysis. This happens when St is large.

In order to interpret results it is useful to make our sen-
sitivity measure dimensionless. This is achieved first by ex-
pressing St in terms of the dimensionless standard deviation
<j, where cr = cr/o}2

}. The second step is to divide Sf by a
representative eigenvalue of the system, such that all sensi-
tivities are referred to 1 rather than to the various A2,,-. Here
we choose to nondimensionalize S, by the eigenvalue corre-
sponding to the tuned blade frequency squared, — co2, (ideally
we should divide by A2,, given in Eq. (8), but this would result
in a complicated expression for £,; moreover, for small aero-
dynamic coefficients, these two normalizations are nearly
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Fig. 11 Amplitude pattern of the lowest frequency mode for various
numbers of blades. In all cases the standard deviation of blade mis-
tuning is e = 0.63%.

equivalent). The selected normalization yields the dimen-
sionless sensitivity measure:

- A, (18)

From Eq. (18), we observe readily that the sensitivity mea-
sure increases as the aerodynamic interblade coupling de-
creases and as the number of blades increases. Detailed results
are given below.

B. Sensitivity Results
Here we use our stochastic sensitivity measure in order to

reach general results regarding mistuning effects. Note that
S, is a complex number that characterizes the sensitivity of
both the frequency and damping of a tuned mode to mistun-
ing. The damping in a mode, however, is always small (this
does not mean it is unimportant), and we have consistently
observed that the sensitivity of the frequency is the one that
governs mistuning effects. Therefore we focus on the real part
of our sensitivity measure.

Since the computation of aerodynamic forces for the SSME
turbine is expensive, we used _another blade assembly to in-
vestigate the effectiveness of S, in predicting high sensitivity
and localization. This rotor is an advanced unshrouded fan
stage, studied earlier.6-17 Complete details about the models
and the rotor properties can be obtained from these refer-
ences.

Figure 10 displays the real part (representing frequency) of
the sensitivity of the modes of a 78-bladed rotor. The eigen-
values are sorted from the lowest frequency tuned mode to
the highest frequency one. The sensitivities of all the modes
are very large (much larger than 1; note the scale). This pre-
dicted high sensitivity is confirmed by the lowest frequency
mode of the 78-blade rotor, displayed in Fig. 11 for s =
0.63%. This mode exhibits strong localization features. More-
over, Fig. 10 shows that the modes with the lowest and the
highest frequencies are much more sensitive to mistuning than
those near the middle of the frequency cluster. This is fully
consistent with the results presented in Fig. 4 for the SSME
turbine, which showed that the least and most stable modes
(typically located near the middle of the mode group) are less
severely localized than the lowest and highest frequency modes.

Figure 11 displays the lowest frequency mode of this rotor
for various numbers of blades, from N = 20 to N = 78. We
note that while the mode of the 20-blade assembly is localized
to approximately one-half the blades on the rotor, the degree
of localization of the same mode increases rapidly with the
number of blades. For the 78-blade rotor, only one-sixth of
the blades participate significantly in the motion. The cor-
responding calculated absolute values of the sensitivity mea-
sures for real parts of eigenvalues are 249 for N ="20 and
1167 for N = 78, and are consistent with the mode shapes in
Fig. 11.

On a final note, we point out that the calculation of the
sensitivities for all the modes is a trivial task that requires
only the tuned assembly's eigensolution. No solution of the
mistuned eigenvalue problem is required. This sensitivity
measure could be used effectively as a design tool.

VI. Concluding Remarks
The main findings of this study are i) weak aerodynamic

coupling causes the aeroelastic characteristics of high-energy
turbines to be highly sensitive to small random blade mistun-
ing, and 2) the presence of high sensitivity can be detected
by a stochastic sensitivity measure based solely on tuned sys-
tem information. Besides providing a physical understanding
of mistuning effects and being cost-effective, the sensitivity
measure developed here has the potential to become a useful
tool for the turbine designer.

Upon introduction of small mistuning, the root locus of the
aeroelastic eigenvalues loses the regular structure that char-
acterizes the tuned assembly to become randomly scattered,
and the constant interblade phase angle mode shapes of the
tuned assembly become strongly localized to a few of the
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blades. The occurrence of vibration localization has important
consequences for high-energy turbines. Localization results
in a confinement of vibrational energy to a few of the blades,
and therefore, in a possibly large increase in amplitude for
those blades. In turn, stresses are larger and fatigue life is
shorter, which can ultimately result in the failure of those few
blades.

We did not consider structural coupling between blades in
our study. However, previous research6-7 has shown that aero-
dynamic and structural coupling affect the sensitivity to mis-
tuning in the same qualitative fashion. Hence, including struc-
tural coupling in our model would increase interblade coupling
and lower the sensitivity to mistuning. Let us consider an
extreme situation where the structural coupling is 10 times
stronger than the aerodynamic one. Since the degree of lo-
calization is a function of the ratio of coupling to mistuning,15

the assembly with both aerodynamic and structural couplings
requires a mistuning 10 times larger than that for the aero-
dynamic-only system in order to produce the same localiza-
tion. For the SSME, since 0.1% mistuning causes strong lo-
calization in the aerodynamic-only system, it means that a
mistuning of 1% would be needed. With mistuning estimates
typically ranging from 1 to 5%, we conclude that high sen-
sitivity and strong localization would still be observed in this
extreme situation. The study of mistimed assemblies with both
structural and aerodynamic interblade coupling will be the
subject of future research.
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