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Dynamic Aeroelastic Stability of Vertical-Axis Wind Turbines
Under Constant Wind Velocity

Fred Nitzsche*
DLR—Institute of Aeroelasticity, D-37073 Goettingen, Germany

The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is
studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by
a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear
perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence
of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

Nomenclature
A = area of the blade cross section
A2, Ai, Al} = apparent mass, aerodynamic damping,

aerodynamic stiffness matrices, respectively
a = nondimensional location of the elastic axis

measured from the midchord point in
semichords (positive aft)

b = blade semichord
C = Coriolis matrix
C(k) = Theodorsen's lift deficiency function
c,/() = airfoil drag coefficient
E = Young's modulus
EA = axial stiffness
El a = bending stiffness, / = x (flatwise),

y (chordwise)
G = shear modulus
GA = shear stiffness
GIa = torsional stiffness
h = turbine's half height
K = stiffness matrix
k = reduced frequency
Lr, Lnc = circulatory and noncirculatory components

of the lift
/ = blade's total length
M = mass matrix
Ma = aerodynamic moment
M; = component of the resultant moment at the

cross section, / = 1, 2, 3
p = Laplace variable
Qi = component of the resultant shear force at

the cross section, / = 1,2
q = state vector of the modal coordinates in the

time domain
R = turbine's maximum radius (at "equator")
r = radial coordinate of the troposkien
rH = radius of gyration of the cross section
s = spatial coordinate along the blade (from

"north pole")
s.y, cy = sin y, cos y (y = any angular parameter)
t = time
M, v, w = local linear displacements of the elastic

axis
V = local velocity of the wind relative to the

blade cross section
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K, = undisturbed velocity of the wind relative to
the ground

X = local tip speed ratio, rfl/V
Xx = turbine's tip speed ratio, R£l/Vx
x = state vector of the modal coordinates in

the spatial domain
x(n) = nondimensional position of the blade's

cross section neutral axis in semichords,
Fig. 3a

xa = nondimensional position of the blade's
cross section center of mass in semichords,
Fig. 3b

yD - state vector of the displacement variables,
[uxiVx2woL]T

1,0 = unity matrix, null matrix
a - torsion of the blade cross section
f = vertical coordinate of the troposkien

(Fig. 1)
0 = azimuth angle, fit
K ( ( ) ) = local initial curvature of troposkien
A = fundamental transition matrix
A = eigenvalues of the fundamental transition

matrix
/*, = mass ratio parameter, pR2/(<rA)R
£ = structural damping factor
p = air density
a = blade's material density
T, r(()) = perturbation tension, initial tension of

troposkien
(p = troposkien local angle, Eq. (A8)
<£> = modal matrix
Xi = rotation of the blade cross section, / • = 1,2
fl = turbine's spinning rate
a) = harmonic frequency

Subscripts
R = reference value
,r = differentiation with respect to t d/dt
,0 = differentiation with respect to 9, d/39

Superscripts
T — transpose of a matrix

= spatial derivative, d/ds
* = characteristic value

= nondimensional quantity
' = diagonal matrix

Introduction

T WO fundamental kinds of modern wind turbines have
been investigated around the world: 1) the horizontal-

axis (HAWT) and 2) the vertical-axis wind turbines (VAWT).
348
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AIRFOIL-
SECTION

Fig. 1 Darrieus rotor.

The dynamics and aerodynamics of HAWT are better known,
since the vast experience in propeller design of the aeronau-
tical industry was employed to solve the important problems
related to structural dynamics and aeroelasticity. However,
VAWT, with their particular characteristics, have been chal-
lenging analysts.*~y Since modern VAWT are characterized
by high spinning rates, for an observer sitting on the blade
the flowfield is approximately parallel to the tangential motion
of the airfoil. This observation led the former analyses to
neglect the presence of the free wind speed V^ when per-
forming flutter calculations. Although the free wind may be
considered a second-order periodic perturbation on the air-
loads, it is ultimately responsible for the motion of the turbine
and, therefore, is not disregarded in the present analysis.
Moreover, accidents reported with some turbines have indi-
cated that some improvement must be done on the existing
theory so that the new generation of large and more econom-
ical machines may be considered fully reliable.

The troposkien shapeL5-8 has sometimes been invoked in
structural modeling of the blades of a special and particularly
interesting VAWT; the Darrieus rotor (Fig. 1). When gravity
is neglected, the troposkien is the plane curve described by
a flexible rope rotating at a constant spinning rate. Its shape
is known in closed analytical form.8 Although a blade with
such geometry is characterized as having no bending stress in
the equilibrium position, tests have indicated that, under cer-
tain conditions, serious vibrations about the original position
may occur. These vibrations involve in-plane (flatwise), out-
of-plane (chordwise), and torsion of the structure. The in-
tention of this article is to present an aeroelastic study of the
troposkien-curved blade in the presence of free wind, ob-
serving the factors that may affect the dynamic stability of
the structure. The mathematical model includes the most im-
portant parameters related to the VAWTs design, such as the
center of mass (c.m.) and center of pressure (c.p.) offset from
the elastic axis and the blade type of support. Effects like
rotary inertia, shear deformation, extensibility, structural
damping, and Coriolis are included as well.

Aeroelastic Equations of Motion
The general, second-order nonlinear aeroelastic equations

of motion for a slender, nonuniform Darrieus blade were
presented by Kaza and Kvaternik.9 For physical understand-
ing of the aeroelastic stability of a troposkien-curved blade,
such degree of complexity seems unnecessary. However, it
was decided that the number of degrees of freedom (DOF)
of the blade cross section should be as large as six, containing
the three linear displacements associated with the displace-
ment of the reference axis from the troposkien equilibrium
and the related three rotations of the cross section. Although
it is possible to reduce the number of state variables by making
reasonable assumptions such as blade inextensibility and neg-

ligible shear deformations, it seemed more effective to carry
out the solution with the whole set of equations since impor-
tant information may be inadvertently lost if premature sim-
plifications are taken.

Small perturbations from the troposkien are assumed. The
blade is considered a prestressed, untwisted, nonuniform rod
on which a linear field of deformations is applied. The gov-
erning equations of motion for a three-dimensionally curved
rod under a general initial stress configuration were obtained
by different authors. Among them, Nair and Hagemier10 use
the state vector formulation to group these equations into a
set of 12 first-order ordinary differential equations. The
present work will proceed by taking these results, which were
derived on the basis of the principle of virtual work. They
satisfy the "hybrid formulation,"11 where both the general-
ized force-related and the generalized displacement-related
state variables are cast in a state vector form compatible with
Reissner's principle of elasticity.

D'Alembert's principle and analytical dynamics methods
are employed to obtain the dynamic loads that are experi-
enced by the blade when it is rotating at a constant angular
velocity. The c.m. offset, rotary inertia, Coriolis force, and
gyroscopic moment effects are included. Gravity is neglected.
The latter approximation is not only applicable for medium
size, but also for some large VAWT on the basis of the light-
ness of the blade design.

Theodorsen's theory for thin airfoils oscillating in an in-
compressible flow is used to derive the external aerodynamic
loads. The basic assumptions include: two-dimensional strip
theory with the "simple sweep" idea (the airloads are unaf-
fected by any component of the relative wind parallel to the
local span), small angles of attack, no stall, and c.p. located
at the quarter chord point. The fact that the optimum per-
formance of Darrieus turbines occurs at high tip speed ratios
contributes to assure small angles of attack and minimizes the
possibility of stall. No attempt will be made to model the
wake.

The linear aeroelastic equations of motion for a nonuniform
blade originally curved in the troposkien shape were carefully
derived in a former study.12 The resultant set of equations
takes the form (see Fig. 2)

(la)

Qi + /2 = o (ib)
T- ~ K<">C, + /3 = 0 (1C)

Ml + K<">M_, - Q2 - T(">A-, + m, = 0 (Id)

M\ + Q, - T(">x2 + m, = 0 (le)

A/; - K<">M, + m, = 0 (If)

«' + «<'V - ^2 - [Q,/(G>l)J = 0 (Ig)

V + AT, - [Q2/(<^4)«] = 0 (Ih)

w" - K«"M - ai{r/(EA)R] + bx^a^M^EI^] = 0 (li)

X\ + «<">« - acl[M,/(£/0)«] + fe<"'fl,,[r/(£/vv)Rl = 0 (Ij)

AS - [M2/(EIyy)K] = 0 (Ik)

a' - K'"'*, - [M,/(G/JR] = 0 (11)

In Eqs. (li-lj)

= f X ] ma° \1 - [to'»>]2(EA)K/(EU J ^ ^
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plane of njrmmetrjr of th« crow
(equilibrium position)

Fig. 2 Original and perturbed position of the blade cross section.
Single arrows represent forces, double arrows moments. All pertur-
bation quantities are measured in the reference frame defined by the
undisturbed blade position (i,, i2, e3).

Fig. 3 Blade cross section definitions a) structural and b) aeroelastic

takes the unit value only if the neutral center coincides with
the shear center. The cross section's definitions are depicted
in Fig. 3a.

The total external load acting at the blade cross section is
obtained by adding the dynamic and aerodynamic contribu-
tions

// = f? + ff (3a)
m, = m!> + m?\ (i = 1, 2, 3) (3b)

where/7/, m //and/vj, mA
t are respectively given by Eqs. (4a-

4f) and Eqs. (16a-16d). In the Appendix, the parameters of
Eqs. (la- 11) associated with the troposkien geometry are
sought:

- bxaajt -

bXaXlj

(WM -

-(w,, + 21V,, +

where

r2)a,, -

+

- s*(u. - bxaa)

(4a)

(4b)

rc,
(4c)

(4d)

(4e)

(4f)

(5)

The terms underlined in Eqs. (4a-4f ) are identified as steady-
state components, related to the motion of the rigid blade.
In the current stability analysis there is no interest in these
components; thus, they are subtracted from the equations.
The geometric aeroelastic parameters are defined in Fig. 3b.

The lift and pitching moments, per unit of span, due to
both vertical translation and pitching of a two-dimensional
airfoil, are defined in Eqs. (6a) and (6b)13:

L = Trpb2(ujt + VOL. - baajt) + 2<7rpVbC(k)[uJ

+ Va + b(Q.5 - fl)aj (6a)

Ma = <irpb2[baujt ~ Vb(Q.5 - a)a. - 62(0.125 +/ a2)ajt]
+ 27rpVb2(a + Q.SWWUj + Va + 6(0.5 - a) a,,]

(6b)

In Eqs. (6a) and (6b) the first and second terms are known
as the noncirculatory and circulatory components of the
aerodynamic lift and moment about the elastic axis, respec-
tively:

L = Lnc(0 + L,(f, *)
A/,, = M,,|K.(0 + Mai(t, k)

(7a)

(7b)

These components are shown in Fig. 4 according to their
positive directions. The present analysis also includes the air-
foil drag which acts at the c.p. and has a magnitude, per unit
of blade span

D = pV2bc(l() (8)

When the airfoil moves in plunging motion alone, an induced
angle of attack a, is created:

a, = tan-'(w/\/V2 -a2) = uJV (9)

The effective angle of attack is defined as the sum of the pitch
angle and the induced angle of attack

ae = a 4- Uj/ (10)



NITZSCHE: AEROELASTIC STABILITY OF WIND TURBINES 351

Fig. 4 Blade aerodynamics: top and lateral two-dimensional views of an elementary section along the blade.

According to the assumption of small angles, the nonzero
vector components of the resultant aerodynamic force and
aerodynamic moment are obtained from Fig. 4 using simple
geometric considerations. In "disturbed" coordinates (e\, e\,

ft = - Lc - Lnc - Da, = - L - Dae (l.la)
ft = Lcaf - D (lib)

m$ = Mu + b(a + 0.5)Da(, (lie)

These are transformed into the "undisturbed" coordinates
( e , , e 2 , e j )

r/q r i -« *, n r/n
/2 = « 1 -A-. /r (12a)

L f t ] L-X2 Xi 1 J L o J

r i -a X2 i r o i• * ' 71 NL-*2 x\ 1 J LmyA
after linearization yielding

= -L -

b(a + 0.5)D(a

(12b)

(13a)
(13b)
(13c)
(13d)

The underlined term in Eq. (13b) is steady state and, thus,
unimportant to the analysis. The derivation continues by seek-
ing an approximation for the relative wind speed ratio V/V^
valid for the high tip speed ratios which characterize the op-
timum performance of Darrieus turbines [X = 0(5)]. Ash-
ley,14 using the "simple sweep" idea, calculated the aerody-
namic effective components of the relative wind. Referring
again to Fig. 4

V, =. -Vyc^ (14a)
V2 = -Or -V*se (14b)

From Eqs. (14a) and (14b), a linearization for the relative
wind speed ratio is readily found

by expanding the expression, under the square root in powers
of l/X. Likewise, a compatible linearization for the square of
the relative speed ratio will be necessary:

2 = X2(l + 2s0/X) = X- + 2XsH (15b)

Substituting Eqs. (6a) and (6b) and (8) into Eqs. (13a-13d),
and using Eqs. (15a) and (15b), the airloads are explicitly
obtained in terms of the problem's state variables:

i) = -irKb/VDu,, + (X + s

alVl) ajf] - 2ir.C(k)q - c(/o(X
(16a)

(16b)

^uM - (X

X (0.5 - a)a, - (62/n) (0.125

(X

m<
pbVl pb2Vl = 0

(16c)

(16d)

where

q = (x +
+ (X +

w , + (X2 + 2XsH)a

(17)

2se/x (15a)

General Flutter Analysis
The dynamic aeroelastic stability is studied by the classical

modal superposition method. Two different situations are an-
alyzed. The first is related to the forced motion of the Darrieus
rotor by an external device such as a motor. The second is
concerned with the actual work of the wind turbine when
generating mechanical energy, assuming wind speed increas-
ing from zero to characteristic values in the operating range.

The first situation is well suited for the root-locus method
of tracing the roots of the so-called flutter determinant in
the complex plane, since the airloads are easily converted
in the frequency domain by taking their Laplace transform
with respect to time. In the second case, the airloads gener-
ate differential equations with periodic coefficients and the
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Floquet-Lyapunov theorem should be employed to determine
the stability boundaries of the system.15

The modal superposition method is especially attractive
when the natural free-vibration modes used to construct the
aeroelastic modes are real-valued functions, once the well-
known properties of the classical real eigenvalue problem
remain valid. Although the free-vibration system has complex
eigenvalues, generated by the Coriolis-related terms, it is still
possible to work in the real domain by considering the Coriolis
force as an additional external load acting at the blade cross
section.

If the quasisteady approximation [C(k = 1)] is taken, the
flutter problem is described by the following matrix equation:

My" + Kyf) = -Ay" - (C + A,)yD, - A(}yD (18)

The associated free-vibration eigenvalue problem, given by
the left side of Eq. (18), is solved by an integrating-matrix
scheme.16 The m real eigenvectors of the "Coriolis-free" sys-
tem can be organized in the modal matrix

IV"0! (19)

A new set of dependent variables (modal coordinates) are
defined by the linear transformation

y = (20)

where only jc is time-dependent. Due to the harmonic time
dependence of the modal coordinates, one has

= 0

Premultiplying Eq. (22) by <£>r, one has

where

= 3>TM<!>

(21)

(22)

(23)

(24)

is the matrix of generalized masses. Therefore, Eq. (18) reads
in modal coordinates (nondimensional form):

(C - 0
(25)

where A2, C, A,, and A() are square matrices of dimension m,
obtained by pre- and postmultiplication of the corresponding
matrices in physical coordinates_ by 4>_r and <t, respec-
tively. The aerodynamic matrices A() and A, may be written
as the sum of two other matrices12:

(26)

(27)

From this point on, the bars denoting the nondimensional
quantities will be dropped for the sake of the notation sim-
plicity.

Zero Wind Speed Flutter Problem
If IIX^ —> so (zero wind speed situation), it is straightforward

to Laplace transform Eq. (25) with respect to time and obtain
the flutter determinant in terms of simple matrix operations.
Therefore, the characteristic values *p of the determinant are
responsible for the aeroelastic stability:

| CM + AtA2)*/?2 + (C + /iA,)*p + Wo>2 + juAol - 0 (28)

Muller's iterative complex root finder17 is used to construct
the root-loci of the first two aeroelastic modes as a function
of the spinning rate. This result is presented in Fig. 5, as a
plot of Re(*p) (the normalized modal damping) vs Im(*p) =
co/fl (the normalized modal frequency). The case investigated
corresponds to a Darrieus working at the sea-level air density,
elastic axis at the quarterchord point, no structural damping,
no c.m. offset, and pinned blades. The geometric and struc-
tural properties are listed in Table 1. It was observed that
this turbine flutters at about 40 rpm, within its range of op-
eration. To extend the stability boundaries of the same turbine
to its entire operating range, it was necessary to introduce
structural damping. The result obtained with a structural

Table 1 Darrieus rotor properties

/ - 24.1 m
h = 8:5 m
ft = 29.8 - 52.5 rpm
(crA)R = 10.22 kg/m
b = 0.2665 m
rn = 0.10645
(£/„.)„ = 357.56 x 104N-rrr
(E/vv)* = 9.0653 x 1 0 4 N - m 2

(GrH)R = 7.1972 x 1 0 4 N - m 2

(£.4)^ - 231'.83 x 106N
(GA)R = 89.316 x 106N

~~ 1 Orpm

10

-06 -0.4 -0.2 0.2

Fig. 5 Root loci vs 11 of the first two aeroelastic modes: a) flatwise
bending-spanwise displacement and b) chordwise bending-torsion. JJL
= 6.05, ^ = 0, x(, = 0,> = -0.5. Pinned joints. V., = 0.

10

-1 -0.75 -0.5 -0.25 025

Fig. 6 Root loci vs 11 of the first two aeroelastic modes: a) flatwise
bending-spanwise displacement and b) chordwise bending-torsion. JJL
= 6.05, £ = 0.1, xn = 0, a = -0.5. Pinned joints. V, = 0.
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damping of 10% is shown in Fig. 6. Structural damping can
be readily introduced through a single term added to Eq. (27).
The hypothesis involved is that the structural damping may
be diagonalized by the modal matrix:

+ (-R = 0 (29)

Another important conclusion from this preliminary study is
that apparent mass has only a minor influence on the results.
The stability boundaries are increased by an amount less than
2% if the matrix A2 is included in the mathematical model.
This observation is also relevant for the next nonzero wind
analysis.

Nonzero Wind Speed Flutter Problem
When a nonzero wind speed configuration is considered,

the periodic terms in Eqs. (26) and (27) are present. Based
on the above results, apparent mass is neglected, and Eq.
(25) is premultiplied by the inverse of the generalized mass
matrix, yielding

- 0

Here

H, =

(30)

(31)

(32)

The period of revolution of the blade may be normalized to
one if a new time scale is introduced (0 = 0/2-7r). In state
vector form, Eq. (30) reads

0 (33)

where M{ = 2irHlt and H0 - 47T2H0.
The nature of the eigenvalues of the transition matrix of

the system over a single period will, according to the Floquet-
Lyapuhov theorem, determine the stability of the system. The
same integrating-matrix scheme used to solve the free-vibra-
tion eigenvalue problem is employed to derive the transition
matrix over the unitary period:

(</)„=, = A(<7)«=() (34)

The stability requires that for all eigenvalues of A

Re(A/)2 + Im(A,)2 < 1; (/ = 1, 2, . . . , 2m) (35)

where

Re(*/?,) - /,,[ Im(A,)2]/2 (36)

As in the previous section, two aeroelastic modes are stud-
ied. By varying Xy., successive eigenvalues are extracted from
A, and the stability is checked. Figure 7 depicts the modal
damping coefficient calculated with Eq. (36) for the first two
aeroelastic modes of a pinned blade spinning at 50 rpm, and
the wind speed varying in such a way that the tip speed ratio
lies within the operating range of the turbine. The free wind
has a second-order effect on the flutter of the troposkien blade
due to the order of magnitude of the tip speed ratios en-
countered in the real performance of the Darrieus. The cases
investigated are the counterparts of the situations presented
in Figs. 5 and 6. In the top figure (£ = 0) an unstable branch
(a) is observed, whereas in the bottom figure (f =.0.1) the
unstable branch stabilizes itself. In both situations the higher
the tip speed ratio, the worse the stability of branch (a) and

0.2

0.0

-6.2
I
-0.4

-06

-08

0.2

0.0

-02
)
-04

-06

-08

a)

b)

a)

b)

Fig. 7 Modal damping coefficient evolution with Xy of the first two
aeroelastic modes: a) flatwise bending-spanwise displacement mode
and b) chordwise bending-torsion mode. Top figure: £ = 0; bottom
figure: f = 6.1,> = 6.05, *„ = 0, a = -0.5, il: = 50 rpm. Pinned
joints.

0.00

»(*p) -0.02

-0.04

8

Fig. 8 Flatwise bending-spanwise displacement mode. Modal damp-
ing coefficient evolution with X-_,_. /u, = 6.05, f =0 .08 , x(X = 0,
a = —0.5, fl = 50 rpm. Pinned joints.

the better the stability of branch (b). Figure 8 depicts a par-
ticularly interesting situation where the flutter point is spotted
at about X - 4.8 for•£ ='0.08.

Figure 9 presents a comparison between pinned and clamped
blades. All structural and geometric properties remain the
same except for the c.m. offset, which is now introduced (5%
of the blade chord, the elastic axis lying behind the c.m.).
When this case (top figure) is compared to its counterpart
shown in Fig. 7, one concludes that the c.m. offset has little
effect on the stability. However, the bottom figure shows that
the most effective way of providing extra stability margins to
Darrieus rotors is to restrain the blade's attachments. The
flatwise bending-spanwise displacement mode becomes the
most stable, exchanging its relative position with the chord-
wise bending-torsion mode. Although there is a slight desta-
bilizing tendency in the latter branch as the tip speed in-
creases, the stability boundary is never reached in the operating
range of the turbine.

A convenient way to check some of the present flutter
calculations is to compare the modal damping coefficients
obtained by different methods: the zero wind case against the
nonzero wind case, taking the limit of the latter as the airspeed
decreases towards zero with the turbine still in operation
(X,,. —» 3°). Within the limits of accuracy of the theories ap-
plied, they should match [Eq. (36)]. Table 2 displays the result
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Table 2 Re(*/;)a

Mode
1st
2nd

Laplace transform
0.1165

-0.4926

Floquet-Lyapunov

0.1165
-0.4906

:'Pinned blade at sea level, £ = 0, xa - 0, a = -0.5, ft = 50 rpm, and
I/A', - 0.

Table 3

Mode Complete problem Modal superposition

1st
2nd

1.330
2.873

1.313
2.891

;'Pinncd blade at /u, = 0, £ = 0, XH = 0, and O = 50 rpm.

SO)

0.2

0.0

-02

-0.4

-06

-oa

11 ! ' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 IH

_ — a) _

_ _

- b) J

t7 1 , . . . 1 . . . . 1 . , . . 1 ~:

•5
a'
2o
Q.

8O)

02

0.0

-02

-04

-06

-08

b)

a)

Fig. 9 Modal damping coefficient evolution with Xv.' of the first two
aeroelastic modes: a) flatwise bending-spanwise displacement mode
and b) chordwise bending-torsion mode. Top figure: pinned joints;
bottom figure: clamped joints. /* = 6.05, £ = G,JC« = -0.1, a = -0.5,
ft = 50 rpm.

of such a comparison for one particular case. The agreement
is perfect for the first aeroelastic mode, and a relative error
of only 0.004 is observed for the second mode.

Another question that will be investigated next is concerned
with the number of free-vibration modes employed to con-
struct the modal matrix and, consequently, the aeroelastic
modes. This aspect of the problem is particularly important
since the free-vibration modes used in the present analysis
were not actual, but fictitious ones obtained by artificially
dropping the Coriolis terms from the problem's original for-
mulation. Table 3 answers this question by comparing the first
two eigenvalues associated, the "complete" dynamics (in-
cluding Coriolis effects) against the "Coriolis-free" results.
The low errors observed guarantee the reliability of the pres-
ent analysis.

Conclusions
The complete dynamic aeroelastic analysis of the Darrieus

rotor was performed. Some important conclusions may be
drawn from the mathematical model introduced:

1) Flutter may be an important source of failure of such
VAWT. Situations were observed in which the blades became
unstable within the operating range of the turbine. The free
wind speed has a secondary influence in the results, but at
least in one particular situation the turbine fluttered at a finite
value of tip speed ratio.

2) Structural damping plays an important role in the stability
analysis.

3) Nevertheless, the blade's boundary conditions ultimately
determine the stability. The Coriolis effect plays a funda-
mental role in the system's dynamics, coupling together free
mode shapes originally orthogonal at the null spinning rate
(i.e. flatwise, chordwise, and torsion). It became clear that
the designer should choose a more restrained blade support:
clamped joints provided better safe margins as opposed to
pinned joints. Actual design conditions must lie between the
two extreme situations, but manufacturing solutions should
increase the degree of attachment of the blade rather than
decrease it.

The theory provides space for the inclusion of unsteadiness
of the flow [C(k) ± 1], but no numerical example was pre-
sented because it would require an extension of Theodorsen's
lift deficiency function in terms of the azimuth angle for the
case of the nonzero wind. Moreover, the quasisteady ap-
proximation is generally regarded as valid for the low reduced
frequencies which characterize the operation of the Darrieus
turbine.

Appendix: The Troposkien
Blackwell and Reis* coined the word "troposkien" to de-

scribe a geometric shape assumed by a perfect flexible cable
of uniform density with its ends attached to two fixed points
and turning at a constant angular velocity (from the Greek:
tropo = turning and skien = rope). It is a well-defined shape
and, as in the case of the catenary curve, its geometry is known
in a closed mathematical form in terms of elliptical functions:

, c)/F(7r/2, c)]

where

C2 = i/[i + (4/02/32)]

and <t> =• sin-\(r/R). In Eq. (A3)

' 0 = Vl - C2F(TT/2, C)

(Al)

(A2)

(A3)

(A4)

is a rotational parameter, and ft is the ratio of the maximum
horizontal displacement to the maximum vertical displace-
ment of the cable, /3 = Rlh. Thus, the process of numerically
determining the troposkien shape is iterative. It is necessary
to search the parameter c which satisfies a constraint equation:

U2h = 2 E(7r/2,c)
- C2 F(7T/2, C)

- 1 (A5)

where F(-7r/2, c) and E(ir/2, c) are the complete elliptic in-
tegrals of the first and second kind with parameter c, respec-
tively. Once the parameter is determined, it is possible to
calculate the maximum tension in the cable, which occurs at
the point of maximum horizontal displacement—the turbine's
equator:

Tmax = (o-A)RQ,2h2/®2 (A6)

Some algebraic manipulations on the previous collection of
results12 lead to two other important relations: 1) the initial
curvature

(A7)

(A8)

and 2) the local cable angle

••(f> = sin1- '{!/[! + (®2p2/2)cl]
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defined by the normal to the cable at a certain location along
the blade and the vertical axis (Fig. 4). An approximation for
Eqs. (A7) and (A8) in terms of Chebyshev polynomials, useful
for the discretization of the troposkien curve, may also be
obtained.12

The initial tension can be decomposed in terms of the local
cable angle and its vertical component:

r » V // v ) v <p \^^ )

Because there is no gravity field, the vertical component of
the tension remains constant along the blade. In particular,
at the equator

Hence

_(())/-. = 1/C
1 ' ' m:iv J-'^.n

(A10)

(All)
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