Да, есть. Прислал свой труд автор мне очень давно, но оценил ее достоинство я гораздо позже.
Большинство литературы имеет описательных характер и ничего серьезного, что можно реально использовать для проектирования. Но, есть кое-что серьезнее.
Те кто планирует заняться проектированием дельтакрыльев или серьезно разбираться в них должны обязательно иметь эту монографию. Исследователь и автор - мой однофамилец Коваленко Геннадий Дмитриевич. Сибирский гос. аэрокосм. ун-т им. акад. М.Ф. Решетнева. - Красноярск .
Исследования гибкого крыла , рекомендации, расчет, много математики, но реально полезных для проектировщика дельт несколько страниц. Они дорогого стоят. Автор дает формулы расчета оптимальных геометрических параметров крыла, которые гарантируют устойчивость и управляемость, отсутствие склонности к кувырку.
В самолетостроении есть формула расчета параметров самолета - соотношение размаха, площади крыла , оперения и плеча оперения.
Аналог такого расчета только для дельтакрыльев предложен в монографии. Нигде более я не встречал ничего толкового в этой теме.
"Проектирование и технология летательных аппаратов с вихревой адаптацией гибкого крыла : [Монография] / Г.Д. Коваленко, Л.Г. Глухова; М-во образования Рос. Федерации. Набрал в поиске, получил ссылку на заказ-покупку
: Коваленко, Геннадий Дмитриевич - Проектирование и технология летательных аппаратов с вихревой адаптацией гибкого крыла : [Монография] - Search RSL
Конструкции гибких крыльев с высокой продольной устойчивостью
Формообразование гибких крыльев
Профиль гибкого крыла формируется в результате взаимодействия набегающего потока и упругих свойств каркаса крыла и несущей оболочки - паруса. В связи с этим обеспечение требуемых аэродинамических форм каждого участка крыла представляет комплекс работ, направленных на поиск удовлетворительного варианта. ПРи этом взаимодействия на элементы, обеспечивающие аэродинамику крыла в целом могут осуществляться за счет:
действия скоростного напора от набегающего потока
действия статического давления заторможенного потока в специальных полостях в несущей оболочке
создания предварительной формы профилей сечения крыла с помощью упругих элементов - лат
подбора материалов и рабочих сечений по упругим свойствам
Создание эффективного результата для гибкого крыла связано с перебором вариантов конструктивных решений.
Гибкое крыло с надувным профилем
Создание аэродинамического профиля путем наддува специальных полостей, размещаемых внутри двухслойной оболочки паруса на спортивных мотодельтапланах впервые было применено в Красноярском СКБ "Поиск" в 1979 году. Это техническое решение было настолько удачным, что перекочевало в последующие серии , разрабатываемые в последующие десять лет. В крыле "Гриф-5" для повышения продольной устойчивости предусматривалось использование трех оболочек, размещаемых по нижней и верхней поверхностям и между ними.
В результате образуются камеры - расходная и безрасходная - соединенные дренажными каналами и отверстиями. Безрасходная камера служит для формирования лобовой части профиля под действием статического дщавления, созданного путем забора потока через заборник в носке аппарата.
Крыло имеет жесткий каркас. На нем закреплена и натянута нижняя оболочка 13, к которой по передней кромке и по линии 0,7 хорды 5 присоединена верхняя оболочка 10, имеющая дренажные отверстия 12. МЕжду верхней и нижней оболочками помещена третья оболочка 9, прикрепленная к верхней оболочке по линии 0,1 хорды 7, а к нижней оболочке - по линии 0,4 хорды 6, и расположенная, главным образом впереди центра тяжести аппарата 14. На передней кромке имеются воздухозаборники 8 и 11, связанные с внутренней полостью крыла и размещенные как в носовой части крыла 8, так и симметрично на концевых частях эластичной оболочки (как например 11).
Профиль гибкого крыла содержит лонжерон 4, образующий переднюю кромку, нижнюю оболочку 13, выполненную из прочной ткани, на ней закреплена верхняя оболочка 10, сделанная также из ткани, с возможностью раздувания под воздействием внутреннего давления. Между этими расположена третья оболочка 9, выполненная из герметичного эластичного материала, разделяющая профиль на две камеры 18 и 19 и имеющая ширину 0,35 хорды. Она обеспечивает ограничение толщины профиля в пределах 16% хорды. На расстоянии 0,1 - 0,15 хорды от передней кромки крыла до указанной эластичной оболочки 9 располагаются перепускные отверстия 17, что обеспечивает перекрывание их верхней оболочкой 10 при углах атаки менее 8 градусов. На верхней оболочке 10, вдоль задней кромки крыла, расположены дренажные отверстия 12, представляющие собой пробелы в шве, соединяющем верхнюю 10 и нижнюю 13 оболочки. Входное сечение воздухозаборника 8 сориентировано по углом 75 - 90 градусов к корневой хорде крыла, а выходное сечение воздухозаборников 11 - под углом 75 - 90 вдоль передней кромки к базовой плоскости крыла, что обеспечивает гарантированный забор воздуха во всем летном диапазоне углов атаки и при наличии бокового скольжения.
При больших углах атаки 16 (например более 15 градусов) профиль работает следующим образом: ВСтречный поток 20 через воздухозаборник 8 направляется в первую камеру 18, раздувая ее, и далее через перепускные отверстия 17 попадает во вторую камеру 19, которая также раздувается. Эластичная оболочка 9 при этом ограничивает раздувание профиля в толщину, что снижает лобовое сопротивление крыла. Воздушный поток, выходящий из дренажных отверстий 12, уменьшает отрывную зону на крыле, что также снижает лобовое сопротивление и повышает подьемную силу.
При малых углах атаки 25 (например менее 8 градусов) встречный поток 20, обтекая профиль сверху, прижимает верхнюю оболочку 10 к эластичной оболочке 9 и перекрывает перепускные отверстия 17. При этом прекращается поступление воздуха во вторую камеру 19, эластичная оболочка 9 раздувается, увеличивается толщина профиля в носовой части и встречный поток 20 окончательно прижимает верхнюю оболочку 10 к оболочке 9. Полученный профиль сохраняет хорошую обтекаемость, т. е. малое лобовое сопротивление и высокую подьемную силу, вместе с этим центр давления 21 перемещается вперед, аэродинамическая сила 22 и сила тяжести 24 создают восстанавливающий продольный момент 23 относительно центра тяжести 14, который и возвращает аппарат в нормальный режим полета.
В связи с применением эластичной оболочки гибкое крыло приобретает адаптивные свойства и при изменении режимов полета. Обьемный профиль сохраняется при углах атаки, не превышающих 8 градусов, что расширяет пилотажные возможности трехслойного гибкого крыла и повышает верхнюю границу скорости планирования. Величина продольного момента при этом достаточно велика, чтобы противодействовать управляющему моменту при балансирном управлении с полетным весом порядка 120 кг.